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Abstract. We examine the possibility of excitonic superconductivity at a metal–semiconductor
interface. Anab initio RPA calculation of the screened Coulomb electron–electron interaction
is performed for the silicon–jellium multilayer model. The superconducting kernel for this
multilayered system is found to be positive in the whole frequency range considered. We show
that the inclusion of local field effects does not change the sign of the kernel and thus does not
enhance the excitonic mechanism.

1. Introduction

The BCS [1] theory of superconductivity is based on the concepts that electron pairing
can lead to superconductivity and that the attractive pairing interaction which overcomes
the Coulomb repulsion between electrons is caused by phonons. Earlier theories invoked a
wide variety of mechanisms, but the successes of the BCS concepts inhibited the search for
non-phonon mechanisms. Still suggestions appeared sporadically during 30 years between
the publication of the BCS theory and the discovery [2] of high-Tc superconducting (HTS)
oxides. During this period many of the suggestions relied on the pairing concept of BCS
and speculated which bosons would replace phonons as the pairing mechanism. After the
discovery of HTS oxides many of these mechanisms were resurrected and a number of new
approaches were introduced.

Prior to the discovery of HTS oxides, one of the most popular suggestions for producing
higher superconducting transition temperatures was the excitonic mechanism [3]. This
mechanism was also resurrected by Bardeenet al [4] and others [5–7] as a possible
explanation for high-temperature superconductivity in the oxides. However, here we will
focus on the specific pairing mechanism; excitations of virtual electron–hole pairs. In
particular, we will examine a more detailed model along the lines of the work of Allender,
Bray and Bardeen (ABB) [8].

Although the mechanism is called excitonic, strictly speaking the virtual electron–hole
pairs are not excitons since we do not consider bound electron–hole pairs. The contribution
of electron–hole pairs to the dynamical screening can make the dielectric function negative
in some frequency regions resulting in an attractive screened Coulomb interaction. It is
important to note, however, that a negative dielectric function does not necessary yield
pairing. The spatial or wavevectorq dependence is of crucial importance. For example,
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a simple Drude dielectric function for a metal,ε(ω) = 1− ω2
p/ω

2, whereωp is a plasma
frequency, will yield negative values forω < ωp, but this will not lead to a superconducting
electron plasma as demonstrated below by examining the BCS equation with a pairing
interaction described in terms of a wavevector- and frequency-dependent dielectric function
ε(q, ω).

Expressing the BCS equation in terms of an energy-dependent energy gap1(ε) and a
kernelK(ε, ε′) yields

1(ε) = −
∫
1(ε′)
E′

K(ε, ε′) tanh

(
E′

2kBT

)
dε′ (1)

where

K(ε, ε′) ∝
∫ q2

q1

q dq

ε(q, ω)
(2)

T is temperature,E′2 = ε′2 + [1(ε′)]2, kB is Boltzmann’s constant,ω = ε′ − ε, and the
integration limitsq1 andq2 are determined by the condition of momentum conservation [9].
In the more general case of a crystalline solid with a non-homogeneous charge distribution,
the kernelK is proportional to the average of the screened Coulomb interaction matrix
elements between occupied states|k, εk〉 and unoccupied states|k′, ε′k〉.

The essential point concerning the negative regions of the dielectric function is that for
a givenω, ε(q, ω) must be negative for a sufficient number of wavevectorsq to give a
negative value to the kernelK for this value ofω. A plasma model, or even a fullε(q, ω)
modelled with the Lindhard dielectric function, will not produce a negative region sufficient
to cause pairing [10].

To explore the excitonic mechanism with a detailed model, Allender, Bray and
Bardeen (ABB) [8] used a Schottky barrier geometry with a metal in close contact with a
semiconductor in order to allow electrons from the metal to penetrate into the semiconductor
and pair via electron–hole-like excitations across the semiconductor gap. Instead of using
a frequency dependent dielectric function to estimateK, ABB adopted a three-square-well
model forK with phonon, Coulomb, and exciton kernelsKp, Kc, andKe respectively
having cutoff energiesEp, Ec, andEe. Standard solutions for this model [8] were used
as were solutions of the Eliashberg equations [11]. The conclusion reached was that if the
usual estimates forKp, Kc, Ep, andEc are used along with ABB estimates forKe andEe,
very large values ofTc are possible.

Estimates forKe were made using a model proposed by Cohen and Anderson [12] for
phonon interactions. The essential forms are

Kc −Kp = 4πe2

Q2ε(Q)

[
1− �2

p

ε(Q)ω2
ph(Q)

]
(3)

and

Kc −Ke = 4πe2

Q2ε(Q)

[
1− β ω2

p

ε(Q)ω2
g

]
(4)

whereε(Q) is the dielectric function for the wavevectorQ, �p andωp are the ionic and
electronic plasma frequencies respectively,ωph and ωg are the phonon frequencies and
average gap energies, andβ is a parameter which accounts for the time electrons from
the metal spend in the semiconductor. Using estimates ofβ and characteristicωg values,
ABB were able to estimateKe. Because of the inverse dependence onωg, ABB suggested
that narrow-gap semiconductors such as PbTe are preferable. Although tests were made
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on Pb–PbTe systems, to our knowledge enhancements ofTc above that of Pb were not
observed.

The next attempt to obtain an enhancement ofTc using a Schottky barrier was made by
Inkson and Anderson (IA) [13] who suggested that ABB overcounted interactions. These
authors considered analytic forms for the semiconductor and metal dielectric functionsεs
andεm based on simplified models. These dielectric functions had the form

εs(q, ω) = 1+ ε0− 1

1+ (q2/γ 2)ε0− (ω2/ω2
R)ε0

(5)

where

γ 2 = k2
s

ε0

ε0− 1

and

ω2
R = ω2

p

ε0

ε0− 1
.

Here ε0 is the static electronic dielectric function,ωp is the electronic plasma frequency,
and ks is the Fermi–Thomas screening wavevector. In the limit ofω → 0 andq → 0,
εs = ε0.

The model dielectric function for the metal was expressed as

εm(q, ω) = 1+ 1

q2/k2
s − ω2/ω2

p

(6)

which gave the Drude and Fermi–Thomas limits correctly.
The IA argument can be simply expressed as follows. If we let

b = q2

γ 2
− ω2

ω2
R

then

εm = 1+ ε0− 1

ε0b

and

εs = 1+ ε0− 1

1+ ε0b
.

Hence in the limit thatε0 → ∞, εm = εs . For largeε0, in the range of 20 to 100 for
example,

1

εs
≈ 1

ε0
+ ε0− 1

ε0εm
.

Since the pairing interaction in the semiconductor is proportional to 1/εs , IA argued that
for largeε0, which is expected for small-band-gap semiconductors, 1/εs is essentially 1/εm
plus a positive term. The positive term will contribute a repulsive interaction to the pairing.
Hence nothing is gained (and perhaps there is a loss) in the attractive interaction in forming
the Schottky barrier. There is the added implication that ABB achieved an attractive
contribution because of overcounting.

One weak point of the IA approach is the highly approximate forms ofεs andεm. More
rigorous calculations of the metal and semiconductor kernels were later performed by Cohen
and Louie [10] who used the Lindhard dielectric function for the metal and a numerically
calculated RPA dielectric function for Ge to estimate the superconducting kernels (2). In
contrast to the kernels computed using the IA model dielectric functions, these kernels had no



8504 O Zakharov et al

attractive regions and were relatively insensitive to frequency. Based on the analogy with the
electron–phonon interaction, the authors suggested that the local field effects [14, 15] which
were not taken into account in their calculations can significantly change the character of
the screened Coulomb interaction at the metal–semiconductor interface and, possibly result
in the attractive region for the kernel for frequencies of the order of the semiconductor’s
fundamental gap.

Another criticism of the prior calculations of the Coulomb coupling at metal–
semiconductor interfaces is the use of bulk metal and semiconductor dielectric functions.
Charge redistribution at the interface can significantly affect screening in the physically
interesting region within a few bond lengths from the interface. Also calculations [16]
for metal–semiconductor interfaces revealed that electronic states near the Fermi surface of
the metal would have characteristic features of the metal and the semiconductor near the
interface. These states are called [16] metal-induced gap states (MIGSs). The MIGSs have
density profiles which are constant in the metal and decay into the semiconductor with a
decay length on the order of a bond length. Their energy position in the semiconductor is
near the centre of the gap. In a sense the ABB parameterβ is an empirical measure of
this effect. It is these wavefunctions which should be considered when calculating pairing
interactions due to the interface. In all previous calculations of the kernel the wavefunctions
were assumed to be plane waves.

In this paper we address the issues described above. We present the results of anab initio
calculation of the dynamic dielectric matrix for a metal–semiconductor interface with local
field effects included. We also estimate the energy-dependent superconducting kernelK

using the calculated dielectric matrix and the calculated wavefunctions of the MIGS thus
overcoming the limitations of the previous estimates of the kernel.

2. Method

We compute the RPA frequency-dependent dielectric matrix using the standardq-space
expressionχ0

GG′(q, ω) [17] for the susceptibility of the non-interacting electron gas

χ0
GG′(q, ω) =

1

�

∑
k

∑
n,n′

fk,n − fk+q,n′
εk,n − εk+q,n′ + ω + iη

×〈k, n| e−i(q+G)·r|k + q, n′〉〈k + q, n′| e−i(q+G′)·r′ |k, n〉 (7)

where� denotes the crystal volume,n andn′ are the band indices,G andG′ are reciprocal
lattice vectors, the sum overk runs over the Brillouin zone (BZ),{fk,n} are the occupation
numbers, andη is a small positive number. The wavefunctions|k, n〉 and |k + q, n′〉 and
the eigenvaluesεk,n andεk+q,n′ are obtained from the Local Density Approximation (LDA)
calculation.

We constructεRPA from χ0
GG′(q, ω) using

εRPAGG′ (q, ω) = δGG′ − χ0
GG′(q, ω)

4πe2

|q +G′|2 . (8)

The off-diagonal elements ofχ0
GG′ andεRPAGG′ have their origin in the non-homogeneous

charge distribution for the solids. The non-diagonal contributions to the inverse of the
macroscopic dielectric constant,(εRPA)−1

00 , are a consequence of local fields [17].
The screened Coulomb interactionV scr between two electrons atr and r′ can be
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expressed as

V scr (r, r′) = 4πe2

�

∑
q,G,G′

ei(q+G)·r ε
−1
GG′(q)

|q +G′|2 e−i(q+G′)·r′ . (9)

Here the sum overq runs over the first BZ. Because of local field effects, the Coulomb
interaction between electrons in the crystal is non-local. If we neglect the local field
contribution, the Coulomb interaction becomes local

V scr (r − r′) = 4πe2

�

∑
q,G

ei(q+G)·(r−r′) 1

εGG(q)

1

|q +G|2 . (10)

To estimate the superconducting kernelK we need to compute matrix elements of the
screened Coulomb potentialV scr

Vk,k′(ε, ε
′) = 〈k′,−k′; ε′|V scr |k,−k; ε〉 (11)

corresponding to scattering of two electrons in the states|k〉 and|−k〉 with energyε to the
states|k′〉 and |−k′〉 with energyε′.

The dimensionless kernelK(ε, ε′) is the average of the matrix elementVk,k′ ,

K(ε, ε′) = N(εk)
∫ ∫

dk dk′ Vk,k′δ(ε − εk)δ(ε′ − εk′)∫
dk δ(ε − εk)

∫
dk′ δ(ε′ − εk′) (12)

whereN(εk) is the density of states atε = εk.
If the states|k, ε〉 and |k′, ε′〉 are plane waves, the matrix elements are proportional to

ε−1

Vk,k′(ε, ε
′) = 4πe2

�
ε−1
GG(q, ω)

1

|q +G|2 (13)

wherek′−k = q+G andω = ε′−ε. In addition, ifε−1(q, ω) = ε−1(q, ω), expression (12)
reduces to (2).

For the more realistic case,|k, ε〉 and |k′, ε′〉 are the computed LDA Bloch
wavefunctions

|k, ε〉 = e−ik·r
∑
G

cG eiG·r

|k′, ε〉 = e−ik′·r
∑
G

c′G eiG·r. (14)

Use of expression (9) forV scr in momentum space gives

Vk,k′(ε, ε
′) = 4πe2

�

∑
G,G′

z∗G
ε−1
GG′(k

′ − k, ε′ − ε)
|k′ − k +G′|2 zG′ (15)

where

zG =
∑
G′
c′G+G′c

∗
G′ .

3. Results and discussion

As a first approximation to the kernelK, we compute it assuming that the wavefunctions
are plane waves

|k〉 = 1√
�

e−ik·r. (16)
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We also assume that the Coulomb interaction is screened by the RPA dielectric function of
Si.

We use a cutoff energy of 8 Ryd and include the contributions of 100 bands to compute
the screening in Si. The computed RPA inverse dielectric functionε−1(ω) is presented in
figure 1 for two different values ofq. The macroscopic inverse dielectric function with
local field contributions is defined as(ε−1)00, whereεGG′ is the RPA dielectric matrix (8).
The inverse dielectric function without local field contributions is 1/ε00. From figure 1 we
see that the local fields have almost no effect onε for low frequencies. The screening
with local fields is only slightly less effective (ε is smaller andε−1 is larger) in this region.
Around the plasma frequency, the local field effects become more important. The peak in
the inverse dielectric function corresponding to the excitation of the plasmon is not as sharp
if local fields are taken into account. This results in a less attractive negative region for
ε−1.

The frequency region whereε−1(ω) is negative shrinks with increasingq which is
similar to the case of the Lindhard dielectric function. After a critical value ofq (kF for
the Lindhard dielectric function),ε−1(ω) becomes positive everywhere.

To evaluate the integral in (2)ε−1(q, ω) is computed on a 4:4:4 mesh in the BZ. When
determining the integration limitsq1 and q2, we assume the Fermi surface to be a sphere
with a radius of 0.925 au−1 corresponding to a Fermi energy of 11.64 eV. The calculated
values ofK are presented in figure 2 as a function of frequency.

The frequency dependence of the kernel for silicon is in good agreement with the
results of a similar calculation for germanium [16]. The kernel does not exhibit a strong
variation with frequency. It has a minimum near the plasma frequency where the negative
contribution from the low-q matrix elements is the largest but never becomes negative. The
negative contributions for smaller-q matrix elements are compensated by the positive ones
for larger q. The local field effects do not change the kernel significantly. Less efficient
screening for the non-homogeneous charge distribution results in a largerK or stronger
repulsion between the electrons when local fields are taken into account.

We now consider a more detailed model of a metal–semiconductor interface which
provides us with a better approximation for the electron wavefunctions and screening at the
interface. Our model consists of periodically spaced silicon slabs with jellium of density
rS = 2.07 in between them (see figure 3). Each slab contains six double layers of silicon
atoms. The jellium layer is two silicon bond lengths (2× 2.35 Å) thick.

We perform an LDA calculation with a cutoff energy of 6 Ryd and a 12:12:1 mesh
of specialk points in the BZ (19k points in the irreducible wedge of the BZ) without
relaxation of the positions of the silicon atoms. The computed LDA wavefunctions and
eigenvalues are used to calculate the screening at the interface.

The system is metallic (with no gap) and exhibits a relatively low density of states at
the Fermi energy (figure 4(a)). The density of states for the model considered is similar to
the density of states of Si (figure 4(c)) except for MIGS in the gap. Even though we do
not reconstruct the surfaces of the silicon slabs, the density of states does not exhibit sharp
peak at the Fermi energy (figure 4(b)) corresponding to the dangling bond states which is
typical for non-reconstructed semiconductor–vacuum interfaces.

The calculated total charge density for the metal–semiconductor interface model is
shown in figure 5. The charge density inside a silicon slab is similar to that of bulk silicon.
The remnants of dangling bonds at the silicon–jellium interface are visible in figure 5.
The jellium density is close to the initial density (54 electrons/unit cell) but is no longer
homogeneous as can be seen in figure 6.
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Figure 1. The calculated frequency-dependent RPA inverse dielectric function of Si for
q = ( 1

4 ,
1
4 , 0) and q = ( 1

2 , 0, 0) (in the reciprocal lattice basis). The solid (open) circles
correspond to the inverse dielectric function with (without) the local field effects included. The
lines are guides for the eye only.

Figure 2. The calculated frequency-dependent superconducting kernelK for Si. The solid
(open) circles correspond to the kernel computed with (without) local field effects included. The
lines are guides for the eye only.

The plot of the one-dimensional total charge density along thez direction perpendicular
to the layers is presented in figure 7. The dip in the jellium density indicates that there is
a charge transfer from jellium into the semiconductor region.

We compute the frequency-dependent RPA inverse dielectric matrix for 15 different
q vectors, and allow for 200 bands contributing to the sum over the bands in (7). The
calculated inverse dielectric constant with and without local fields contributions is plotted
in figure 8 as a function of frequency for twoq vectors. The frequency dependence of the
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Figure 3. The geometry of the metal–Si interface model. The positions of the silicon atoms
are represented by the solid circles. The shown cross-section corresponds to a (110) plane of
bulk Si. The shaded area denotes jellium. Each silicon slab contains six double layers of silicon
atoms. The width of the jellium layers is two silicon bond lengths. The distance between jellium
and the closest plane of silicon atoms is half a bond length. The electron density of jellium is
chosen to be equal to the electron density of Al (rS = 2.07).

Figure 4. The calculated densities of states for Si–jellium (a) and Si–vacuum (b) multilayers
and Si in the diamond structure (c). The zero of energy corresponds to the Fermi energy for (a)
and (b), and to the middle of the gap for (c).

macroscopic inverse dielectric function is similar to the frequency dependence found for
silicon (figure 1). As in the case of silicon local fields make the inverse dielectric constant
less negative near the plasma frequency.

The MIGSs represent a rigorous quantum mechanical description of electron penetration
from metal into semiconductor at a metal–semiconductor interface. Since we are interested
in the possibility of Coulomb pairing by such electrons, we compute the superconducting
kernelK for the Coulomb scattering of the MIGS pairs.

We choose two states with LDA energies close to the Fermi energy. The contour plots
of the densities corresponding to these two states are shown in figure 9. Both of these
states decay into silicon slabs since their energies lie in the bulk silicon gap. The state
with k = (0, 1

3, 0) has its maximum in the centre of the jellium slab whereas the state
with k = ( 1

12,
5
12, 0) bears some resemblance to the dangling bond states with the region of
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Figure 5. A contour plot of the calculated charge density for the Si–jellium multilayer. The
shown cross-section corresponds to a (110) plane of bulk Si. The positions of the silicon atoms
are shown by the solid circles. The thicker contours in the interstitial region regions correspond
to the minimum charge density of 10 electrons/unit cell. The maximum charge density contours
(170 electrons/unit cell) are in the bonds between the silicon atoms. The change in the charge
density between the adjacent contours is 20 electrons/unit cell. The dashed lines correspond to
the boundaries of the jellium layer.

Figure 6. A contour plot of the calculated charge density for the Si–jellium multilayer. The
contours corresponding to the values of the charge density between 50 and 58 electrons/unit cell
are shown. The change in the charge density between the adjacent contours is 2 electrons/unit
cell. The dashed lines correspond to the boundaries of the jellium layer.

maximum density being closer to the silicon atoms at the interface.
In figure 10 we show the matrix elements of the Coulomb scattering from these states

with momentum transferq = ( 1
4, 0, 0) andq = ( 7

12,
1
4, 0). Even though the inverse dielectric

function is negative for some frequency, the calculated matrix elements are always positive.
This is a consequence of the fact that even without off-diagonal local field contributions,
expression (15) for the matrix element includes contributions of diagonal elementsε−1

GG(q).
These contributions are positive for all frequencies if|G| is large enough and they result
in the overall positive value for the matrix element. The inclusion of the local field effects
does not significantly change the matrix elements.

We estimate the superconducting kernelK by taking an average (12) of matrix elements
over 15 different momentum transfer vectorsq. The calculatedK (figure 11(a)) is always
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Figure 7. One-dimensional total charge density along thez direction. The dotted lines indicate
the positions of the planes of silicon atoms. The broken line corresponds to the initial charge
density of jellium.

Figure 8. The calculated frequency-dependent RPA inverse dielectric function of the silicon–
jellium multilayer for q = ( 1

4 , 0, 0) and q = ( 7
12,

1
4 , 0) (in the reciprocal lattice basis). The

solid (open) circles correspond to the inverse dielectric function with (without) the local field
effects included. The lines are guides for the eye only.

positive as expected. It does not exhibit a strong frequency dependence except for a twofold
increase atω = 0. The overall frequency dependence is similar to the one for the bulk
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Figure 9. Contour plots of electron densities for two MIGS wavefunctions. Case (a) corresponds
to the 30th band fork = (0, 1

3 , 0), case (b) corresponds to the 30th band fork = ( 1
12,

5
12, 0).

The dashed lines correspond to the boundaries of the jellium layer.

Figure 10. The calculated matrix elements for the Coulomb scattering of MIGS pairs with
momentum transferq = ( 1

4 , 0, 0) (a) andq = ( 7
12,

1
4 , 0) (b). MIGSs are the Bloch states with

k = (0, 1
3 , 0) (a) andk = ( 1

12,
5
12, 0) (b). The solid (open) circles correspond to the matrix

element computed with (without) the local field effects included. The lines are guides for the
eye only.

silicon superconducting kernel (figure 2). The kernel with the local field effects included is
slightly less repulsive than the kernel computed without local fields. This differs from the
case of bulk silicon where the local field contributions result in larger positive values of the
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Figure 11. The superconducting kernelK as a function of frequency computed using the LDA
wavefunctions (a) and wavefunctions modified to exclude the Coulomb interaction inside the
jellium layer (b). The solid (open) circles correspond to the kernel computed with (without) the
local field effects included. The lines are guides for the eye only.

kernel. This difference is explained by the fact that in the calculation for bulk silicon we
assume the wavefunctions to be plane waves, and thus do not have the contribution of the
ε−1 off-diagonal elements to the matrix elements. In our calculation of the kernelK for
the silicon–jellium multilayer we use the LDA wavefunctions which are the sums of many
plane waves. In this case theε−1 off-diagonal elements contribute to the kernel, changing
the sign of the effect.

Our calculations are performed for the particular geometry of the Si–jellium layers. One
might argue that by changing the thickness of the jellium layer we can change the Coulomb
matrix elements and consequently the superconducting kernel. Decreasing the width of
the jellium layer is favourable from the point of view of excitonic superconductivity since
the smaller the width the larger the fraction of time electrons from jellium spend in the
interface region (or, in other words, parameterβ of the ABB model will be larger). To
study the effects of decreasing the width of the jellium layer without actually repeating
costly calculations for a different geometry, we modify the LDA wavefunctions we use
in the matrix element calculation by multiplying them in real space by a smooth function
which is close to zero in the jellium layer and renormalizing them afterwards. The contour
plots of two of these modified wavefunctions are given in figure 12.

The kernelK computed using such modified wavefunctions is shown in figure 11(b).
This kernel differs significantly from the one computed with the LDA wavefunctions
(figure 11(a)) only in the small-ω region. Comparing these two kernels we conclude that
the increase ofK at ω = 0 was caused by the Coulomb repulsion in the jellium layer
region. For the higher frequencies the kernel is almost unaffected by the modification of
the wavefunctions. This result allows us to argue that the kernel will be positive for any
geometry of the silicon–jellium interface.
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Figure 12. Contour plots of electron densities for two modified MIGS wavefunctions. The
LDA wavefunctions shown in figure 9 are multiplied by the product of two Fermi factors which
are close to zero in the jellium layer region. The dashed lines correspond to the boundaries of
the jellium layer.

4. Conclusions

To examine the possibility of excitonic superconductivity at metal–semiconductor interfaces,
we performed anab initio calculation of the screened Coulomb electron–electron interaction
for the silicon–jellium multilayer model. Our results are that within the RPA approximation
for screening an attractive excitonic mechanism for electron pairing is not found. The
superconducting kernel for this multilayered system is found to be positive in the
whole frequency range considered. Its frequency dependence is similar to the frequency
dependence for a bulk silicon superconducting kernel calculated using plane wave
wavefunctions. We also show that changing the thickness of the metallic layer does not
affect the frequency dependence of the kernel significantly. We find that the inclusion of
local field effects results in very small changes in the kernel and thus does not enhance
excitonic superconductivity.
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